PH2

Question			Marking details		Marks Available
1	(a)	(i)	$v = \frac{0.15 \text{ m}}{0.0030 \text{ s}} (1) \text{ [or equiv. or by impl.]} = 50 \text{ m s}^{-1} ((\mathbf{unit})) (1)$		1
		(ii)	Either: $T = 0.012 \text{ s} (1)$	Or : $\lambda = 0.60 \text{ m} (1)$	
			$f = \frac{1}{T} [\text{or by impl.}] (1)$ $= 83 \text{ Hz} (1)$	$\lambda = 0.60 \text{ m (1)}$ $f = \frac{v}{\lambda} \text{ [in this form - or by impl] (1)}$ $= 83 \text{ Hz (1) [e.c.f. on } v \text{ from (i)]}$	2
	(b)	(i)	Two of: 0.90 m, 1.20 m, 1.50		1
		(ii)	Maxima midway between minima 0.30 m / λ/2 apart	n maxima and minima / zeroes (1); minima [or maxima 0.30 m / λ /2 apart;] (1) ve the amplitude is constant along string	2
			[or falls gradually]	ve the ampheude is constant along string	1
	(c)			h wave straight from generator [or s travelling in opposite directions	
				ce is destructive [accept: where the two	3
					[12]
2.	(a)	(i)	$\lambda = \frac{2.0 \times 1.8}{12.0}$ m (1) [or by imp	l.] = 0.30 m (1)	2
		(ii)	Reflected sound [would affect	t the pattern].	1
	(b)			o speakers superposed / interfered [or ely [accept: cancel] at that point (1) as it exactly out of phase] (1)	
	(a)		, <u> </u>		3
	(c)		Quiet spots are where loud so		1
	(d)	(i)	$y = \frac{D\lambda}{a}$ (1) thus [or other quant	alification, e.g. recalculation] y halves	
			(1) [or equiv] [because a doubted [Qual. answer "y decreases" +	oles] - correct qual reasoning → 1 mark]	2
		(ii)	Wavelength halves [or equiv] Separation halves (1)	(1)	2
					[11]

Question			Marking details	Marks Available
3	(a)	(i)	[1.00] $\sin x = 1.52 \sin 25^\circ$ [or by impl, or equiv with data inserted] (1) $\sin x = 0.642$ [or by impl.] (1) $x = 40^\circ$ (1) 65°	
		(iii)	Either: [1.52 sin $c = 1.00 \sin 90^\circ$ so] $c = 41^\circ$ [1.65°> c so no escape (1) [No penalty for omission of last point if first mark awarded] Or: $\sin^{-1}(1.52 \sin 65^\circ) / 1.38 (1)$ doesn't exist (1) [so refraction doesn't occur].	2
	(b)	(i) (ii) (iii)	II. equal beam confined to small angle to axis [or damage avoided to reflecting surface] [accept: fewer int. refl ^s] small (1); equal to a few wavelengths (1) light propagates parallel to axis [or without being reflected or along	1 1 2
		` ′	only one path]. [Not – 'only one <u>beam</u> ']	[12]
4.	(a)	(i) (ii)	When e-m radn ⁿ [accept: light, u-v, photons] [of high enough frequency] falls on a surface [or metal] (1) electrons are emitted (1). Photon knocks out electron [or not] or gives energy to e(1). Photon carries energy $hf(1)$. Electron needs [a minimum] energy ϕ to escape (1). Remainder of photon's energy given to electron as KE (1) [KE _{max} corresponds to minimum energy ϕ to escape]	2 4
	(b)	(i)	$E_{k \text{ max}} = 6.63 \times 10^{-34} \times 7.99 \times 10^{14} - 4.97 \times 10^{-19} \text{ J (1)}$ [or photon energy <u>shown</u> to be greater than ϕ] $E_{k \text{ max}} = 3.27 \times 10^{-20} \text{ J (1)}$	2
		(ii) (iii)	Photon energy = 4.47×10^{-19} J < ϕ [or equiv], so no emission 3.27×10^{-20} J(1) Photons don't co-operate releasing electron [or equiv] (1)	2
			1 0 1 1 (-)	[11]

Question			Marking details	Marks Available
5.	(a)	(i)	Fraction = $\frac{\left[3.297 \times 10^{-18} - 2.983 \times 10^{-18}\right](1)}{3.297 \times 10^{-18}} = 0.095 (1) \left[\text{accept } \frac{2}{21}\right]$	2
		(ii)	$\lambda = \frac{hc}{E_{\text{photon}}} (1) \text{ [or } \lambda = \frac{c}{f} \text{ and } f = \frac{E_{\text{photon}}}{h} \text{] (1) [or by impl.]}$ $\lambda = 633 \text{ nm (1)}$	2
	(b)	(i) (ii)	A[n incident] photon (1) of energy equal to $(E_U - E_L)$ (1) [or equiv.] Now 2 photons [original and emitted] [or by impl.] (1)	2
		(iii)	Photons in phase / travel in same dir^n / have same f , λ or $E(1)$ Fewer electrons in L than U(1) [accept pop ⁿ inversion]	2
		(iv)	[So] stimulated emission commoner than absorption (1) [or less pumping needed] Mirrors cause light to traverse cavity [or HeNe etc] to and fro (1) increasing chances of stimulated emission / increases amplification /	2
			increases intensity (1) [or any other correct point, e.g. resonant selection of particular λ].	2
			[No credit for light escaping from r.h. mirror]	[12]
6	(a)		A surface / body that absorbs all radiation incident / falling on it.	1
	(b)		$\lambda_{1 \text{max}} = 250 \text{ [\pm 10] nm (1)}$ $T = \frac{W}{\lambda_{1 \text{max}}} \text{ (1)[$\underline{\text{thus}}$ or by impl.]} = 11500 \text{ K (1) [e.c.f. on } \lambda_{1 \text{max}} \text{]}$ power	3
	(c)		$A = \frac{\text{power}}{\sigma T^4} [\text{transposition at any stage}] (1)$ $= \frac{2.53 \times 10^{31}}{5.67 \times 10^{-8} \times 11500^4} (\text{e.c.f.}) (1) = 2.55 \times 10^{22} \text{ m}^2 ((\text{unit}))$ [e.c.f. on T , e.g. $10^4 \text{ K} \rightarrow 4.46 \times 10^{22} \text{ m}^2$]	3
	(4)	(iii)	Either $A_{\text{Sun}} = 4\pi r_{\text{Sun}}^{2} \text{ [or by impl.] (1)}$ $= 6.1 \times 10^{18} \text{ m}^{2} \ll A_{\text{Rigel}} \text{ (1)}$ e.c. f over slips in 4 or π Spectral intensity higher at 400 nm than at 700 nm (1) 400 nm is at violet end of visible spectrum (1) [or converse] So Rigel not a red giant [Not a freestanding mark]	2
			[NB – "Peak closer to violet than red," unsupported by figures, loses first mark]	3
				[12]

Que	stion		Marking details	Marks Available
7.	(a)	(i)	е	1
		(ii)	zero	1
	(b)		baryon	1
	(c)		p = uud (1) u quark number for $x = 4 - 3$ [= 1][or equiv] (1) d quark number for $x = 2 - 1 - (-1)$ [=2] [or equiv] (1)	
			So x is a neutron (1) [or Δ^0]	4
	(d)		Lepton number zero before and after	1
	(e)		Any 1 × (1) of • High KE means short contact time ✓ • u and d numbers separately conserved [so not weak] ✓	
			 no γ involvement [suggests not e-m] ✓ So strong (1) 	2
				[10]