\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& Marking details \& Marks Available \\
\hline 1 \& (a) \& (i) \& \begin{tabular}{l}
\[
v=\frac{0.15 \mathrm{~m}}{0.0030 \mathrm{~s}}(1) \text { [or equiv. or by impl.] }=50 \mathrm{~m} \mathrm{~s}^{-1}((\text { unit }))(1)
\]
\[
\begin{array}{l|l}
\text { Either: } \\
T=0.012 \mathrm{~s}(1) \& \begin{array}{l}
\text { Or: } \\
\lambda=0.60 \mathrm{~m}(1)
\end{array} \\
f=\frac{1}{T}[\text { or by impl. }] \text { (1) } \& \begin{aligned}
\& f=\frac{v}{\lambda}[\text { in this form }- \text { or by impl }(1) \\
\&=83 \mathrm{~Hz}(1) \text { [e.c.f. on } v \text { from (i)] }
\end{aligned}
\end{array}
\] \\
Two of: \(0.90 \mathrm{~m}, 1.20 \mathrm{~m}, 1.50 \mathrm{~m}, 1.80 \mathrm{~m}\) \\
I. Varies [smoothly] between maxima and minima / zeroes (1); Maxima midway between minima [or maxima \(0.30 \mathrm{~m} / \lambda / 2\) apart; minima \(0.30 \mathrm{~m} / \lambda / 2\) apart] (1) \\
II. No - for a progressive wave the amplitude is constant along string [or falls gradually] \\
Waves reflected by wall (1) \\
Reflected wave interferes with wave straight from generator [or equivalent, e.g. the two waves travelling in opposite directions interfere] (1) \\
Nodes occur where interference is destructive [accept: where the two waves cancel] (1)
\end{tabular} \& \begin{tabular}{l}
2 \\
1 \\
2 \\
1 \\
3 \\
[12]
\end{tabular} \\
\hline 2. \& (a)
(b)
(c)
(d) \& (i)
(ii)

(i)

(ii) \& | $\lambda=\frac{2.0 \times 1.8}{12.0} \mathrm{~m}(1)[\text { or by impl. }]=0.30 \mathrm{~m}(1)$ |
| :--- |
| Reflected sound [would affect the pattern]. |
| Previously, sound from the two speakers superposed / interfered [or by implication](1) destructively [accept: cancel] at that point (1) as it arrived in antiphase [accept: exactly out of phase] (1) |
| Quiet spots are where loud sounds used to be [or equiv.] |
| $y=\frac{D \lambda}{a}(1)$ thus [or other qualification, e.g. recalculation] y halves |
| (1) [or equiv] [because a doubles] |
| [Qual. answer " y decreases" + correct qual reasoning $\rightarrow 1$ mark] |
| Wavelength halves [or equiv] (1) |
| Separation halves (1) | \& 2

1

3
1
1
2

2
[11] \\
\hline
\end{tabular}

Question			Marking details	Marks Available
3	(a)		[1.00] $\sin x=1.52 \sin 25^{\circ}$ [or by impl, or equiv with data inserted] (1) $\sin x=0.642$ [or by impl.] (1) $x=40^{\circ}(1)$	3 1
		(ii) (iii)	65°	
			Either: Or: $\left[1.52 \sin c=1.00 \sin 90^{\circ}\right.$ so $c=41^{\circ}$ $\sin ^{-1}\left(1.52 \sin 65^{\circ}\right) / 1.38$ (1) (1). $65^{\circ}>c$ so no escape (1) [No doesn’t exist (1) [so $_{\text {penalty for omission of last point }}$ if first mark awarded] refraction doesn't occur].	2
		(iv)	I. total internal reflection [not: TIR, total or internal] reflection] II. equal	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
	(b)	(i) (ii) (iii)	beam confined to small angle to axis [or damage avoided to reflecting surface] [accept: fewer int. ref1s]	1
			small (1); equal to a few wavelengths (1)	2
			light propagates parallel to axis [or without being reflected or along only one path]. [Not - 'only one beam']	1
				[12]
4.	(a)	(i) (ii)	When e-m radn ${ }^{\mathrm{n}}$ [accept: light, $\mathrm{u}-\mathrm{v}$, photons] [of high enough frequency] falls on a surface [or metal] (1) electrons are emitted (1)	2
			Photon knocks out electron [or not] or gives energy to e(1). Photon carries energy $h f(1)$. Electron needs [a minimum] energy ϕ to escape (1) Remainder of photon's energy given to electron as KE (1) $\left[\mathrm{KE}_{\text {max }}\right.$ corresponds to minimum energy ϕ to escape]	4
	(b)	(i) (ii) (iii)	$\begin{equation*} E_{\mathrm{k} \max }=6.63 \times 10^{-34} \times 7.99 \times 10^{14}-4.97 \times 10^{-19} \mathrm{~J} \tag{1} \end{equation*}$ [or photon energy shown to be greater than ϕ] $E_{\mathrm{k} \text { max }}=3.27 \times 10^{-20} \mathrm{~J}(1)$	2
			Photon energy $=4.47 \times 10^{-19} \mathrm{~J}<\phi$ [or equiv], so no emission	1
			$3.27 \times 10^{-20} \mathrm{~J}(1)$ Photons don't co-operate releasing electron [or equiv] (1)	2
				[11]

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& Marking details \& Marks Available \\
\hline 5. \& (a) \& \begin{tabular}{l}
(i) \\
(ii) \\
(i) \\
(ii) \\
(iii) \\
(iv)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& \text { Fraction }=\frac{\left[3.297 \times 10^{-18}-2.983 \times 10^{-18}\right](1)}{3.297 \times 10^{-18}}=0.095(1)\left[\text { accept } \frac{2}{21}\right] \\
\& \left.\lambda=\frac{h c}{E_{\text {photon }}} \text { (1) [or } \lambda=\frac{c}{f} \text { and } f=\frac{E_{\text {photon }}}{h}\right] \text { (1) [or by impl.] } \\
\& \lambda=633 \mathrm{~nm} \text { (1) }
\end{aligned}
\] \\
A [n incident] photon (1) of energy equal to \(\left(E_{\mathrm{U}}-E_{\mathrm{L}}\right)\) (1) [or equiv.] Now 2 photons [original and emitted] [or by impl.] (1) Photons in phase / travel in same dir \({ }^{\mathrm{n}} /\) have same \(f, \lambda\) or \(E\) (1) Fewer electrons in L than \(U\) (1) [accept pop \({ }^{\mathrm{n}}\) inversion] [So] stimulated emission commoner than absorption (1) [or less pumping needed] \\
Mirrors cause light to traverse cavity [or HeNe etc] to and fro (1) increasing chances of stimulated emission / increases amplification / increases intensity (1) [or any other correct point, e.g. resonant selection of particular \(\lambda]\). \\
[No credit for light escaping from r.h. mirror]
\end{tabular} \& \begin{tabular}{l}
2 \\
2 \\
2 \\
2 \\
2 \\
[12]
\end{tabular} \\
\hline 6 \& \begin{tabular}{l}
(a) \\
(b) \\
(c) \\
(d)
\end{tabular} \& (i)

(ii)

(iii) \& \begin{tabular}{l}
A surface / body that absorbs all radiation incident / falling on it.
$$
\begin{aligned}
& \lambda_{\mathrm{I} \max }=250[\pm 10] \mathrm{nm}(1) \\
& T=\frac{W}{\lambda_{\mathrm{I} \max }}(1)\left[\text { thus or by impl.] }=11500 \mathrm{~K}(1) \text { [e.c.f. on } \lambda_{\mathrm{I} \max }\right] \\
& A= \\
& \text { power } \\
& \sigma T^{4} \\
& =\frac{2.53 \times 10^{31}}{5.67 \times 10^{-8} \times 11500^{4}}(\text { e.c.f. })(1)=2.55 \times 10^{22} \mathrm{~m}^{2}((\text { unit })) \\
& \quad \\
& \left.\quad \text { e.c.f. on } T, \text { e.g. } 10^{4} \mathrm{~K} \rightarrow 4.46 \times 10^{22} \mathrm{~m}^{2}\right]
\end{aligned}
$$
$$
\begin{aligned}
& \text { Either } \\
& \begin{aligned}
& A_{\text {Sun }}=4 \pi r_{\text {Sun }}{ }^{2}[\text { or by impl. }](1) \begin{array}{l}
\text { Or } \\
r_{\text {Rigel }}=A_{\text {Rigel }} / 4 \pi(1) \\
\\
=6.1 \times 10^{18} \mathrm{~m}^{2} \text { « } A_{\text {Rigel }}(1)
\end{array} \\
&=4.5 \times 10^{10} \mathrm{~m} » r_{\text {Sun }}(1) \\
& \text { e.c.f over slips in } 4 \text { or } \pi
\end{aligned}
\end{aligned}
$$ \\
Spectral intensity higher at 400 nm than at 700 nm (1) 400 nm is at violet end of visible spectrum (1) [or converse] So Rigel not a red giant [Not a freestanding mark] [NB - "Peak closer to violet than red," unsupported by figures, loses first mark]

 \&

1 \\
\\
3 \\
\\
\\
\\
\\
3 \\
\hline
\end{tabular} \\

\hline
\end{tabular}

Question			Marking details	Marks Available
7.	(a)	(i)	e	1
		(ii)	zero	1
	(b)		baryon	1
	(c)		$\begin{aligned} & \mathrm{p}=\operatorname{uud}(1) \\ & \mathrm{u} \text { quark number for } \mathrm{x}=4-3[=1][\text { or equiv] (1) } \\ & \mathrm{d} \text { quark number for } \mathrm{x}=2-1-(-1)[=2] \text { [or equiv] (1) } \\ & \text { So } \left.\mathrm{x} \text { is a neutron (1)[or } \Delta^{0}\right] \end{aligned}$	4
	(d)		Lepton number zero before and after	1
	(e)		Any $1 \times(1)$ of - High KE means short contact time \checkmark - u and d numbers separately conserved [so not weak] - no γ involvement [suggests not e-m] So strong (1)	2
				[10]

